A LiDAR-Based System to Assess Poplar Biomass
dc.contributor.author | Andújar, Dionisio | |
dc.contributor.author | Escolà i Agustí, Alexandre | |
dc.contributor.author | Rosell Polo, Joan Ramon | |
dc.contributor.author | Sanz Cortiella, Ricardo | |
dc.contributor.author | Rueda-Ayala, Victor | |
dc.contributor.author | Fernandez Quintanilla, C. | |
dc.contributor.author | Ribeiro, Angela | |
dc.contributor.author | Dorado, José | |
dc.date.accessioned | 2018-11-14T09:50:58Z | |
dc.date.available | 2018-11-14T09:50:58Z | |
dc.date.issued | 2016-06-21 | |
dc.date.updated | 2018-11-14T09:50:58Z | |
dc.description.abstract | This study evaluated the capabilities of a LiDAR-based system to characterize poplar trees for biomass production. The precision of the system was assessed by analyzing the relationship between the distance records and biophysical parameters. The terrestrial laser scanner (TLS) system consisted of a 2D time-of-flight LiDAR sensor, a gimbal to dynamically stabilize the sensor and a RTK-GPS to georeference its location and, subsequently, the sensor data. The sensor and its stabilizer were fixed facing downwards, on a metal frame designed for this purpose. Then, it was mounted on an all-terrain vehicle to perform 2D scans in planes perpendicular to the travel direction. Distances between the sensor and the surrounding objects had a high spatial resolution, providing high density 3D point clouds. Results on the reliability of the LiDAR system to estimate plant height showed a significant relationship between the sensor readings and actual poplar height and biomass data. In addition, tree biomass and tree volume were properly estimated in the point cloud. Regression analysis showed significant estimates of 0.79 and 0.89 for biomass and volume, respectively. These results reveal the potential of the LiDAR sensor to estimate both, plant height and plant biomass. This sensor's capability, added to its relative low cost, fast reaction, and the high number of readings per second consolidate the ideal system for estimating the productivity of biomass in energy crops. http://link.springer.com/article/10.1007%2Fs10343-016-0369-1 | |
dc.description.sponsorship | This research was funded by the CICyT (Commision Interministerial de Ciencia y Tecnología, Spain), under Agreement No. AGL2011-25243 and AGL2014-52465-C4. | |
dc.format.mimetype | application/pdf | |
dc.identifier.doi | https://doi.org/10.1007/s10343-016-0369-1 | |
dc.identifier.idgrec | 024489 | |
dc.identifier.issn | 0367-4223 | |
dc.identifier.uri | http://hdl.handle.net/10459.1/65098 | |
dc.language.iso | eng | |
dc.publisher | Springer-Verlag | |
dc.relation | info:eu-repo/grantAgreement/MICINN//AGL2011-25243/ES/SISTEMAS DE BAJOS INSUMOS PARA CULTIVOS LEÑOSOS PARA BIOMASA: DESARROLLO Y EVALUACION DE TACTICAS Y ESTRATEGIAS DE GESTION DE MALAS HIERBAS/ | |
dc.relation | info:eu-repo/grantAgreement/MINECO//AGL2014-52465-C4-1-R/ES/DESARROLLO DE NUEVAS HERRAMIENTAS TECNOLOGICAS Y CONCEPTUALES PARA LA IMPLANTACION DE SISTEMAS DE GESTION INTEGRADA DE MALAS HIERBAS EN CULTIVOS DE CEREALES Y VIÑA/ | |
dc.relation | info:eu-repo/grantAgreement/MINECO//AGL2014-52465-C4-2-R/ES/BALANCE ENTRE EFICACIA Y SOSTENIBILIDAD EN LA GESTION INTEGRADA DE MALAS HIERBAS EN SISTEMAS DE PRODUCCION EN ZONAS SEMIARIDAS DE CATALUÑA/ | |
dc.relation | info:eu-repo/grantAgreement/MINECO//AGL2014-52465-C4-3-R/ES/INTEGRACION DE INFORMACION MULTISENSORIAL Y APRENDIZAJE AUTOMATICO PARA LA DETECCION, CARACTERIZACION Y RECONOCIMIENTO PRECISO DE ESTRUCTURAS NATURALES EN CAMPOS DE CULTIVO/ | |
dc.relation.isformatof | Versió preprint del document publicat a: https://doi.org/10.1007/s10343-016-0369-1 | |
dc.relation.ispartof | Gesunde Pflanzen, 2016, vol. 68, p. 155-162 | |
dc.rights | (c) Springer-Verlag, 2016 | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.subject | 3D Plant structure | |
dc.subject | Energy crops | |
dc.subject | Productivity assessment | |
dc.subject | Terrestrial LIDAR | |
dc.title | A LiDAR-Based System to Assess Poplar Biomass | |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | submittedVersion |