A Novel Approach to Automate Complex Software Modularization Using a Fact Extraction System

dc.contributor.authorKhan, Muhammad Zakir
dc.contributor.authorNaseem, Rashid
dc.contributor.authorAnwar, Aamir
dc.contributor.authorHaq, Ijaz Ul
dc.contributor.authorAlturki, Ahmad
dc.contributor.authorUllah, Syed Sajid
dc.contributor.authorAl-Hadhrami, Suheer
dc.date.accessioned2022-11-07T11:10:38Z
dc.date.available2022-11-07T11:10:38Z
dc.date.issued2022
dc.description.abstractComplex software systems that support organizations are updated regularly, which can erode system architectures. Moreover, documentation is rarely synchronized with the changes to the software system. This creates a slew of issues for future software maintenance. To this goal, information extraction tools use exact approaches to extract entities and their corresponding relationships from source code. Such exact approaches extract all features, including those that are less prominent and may not be significant for modularization. In order to resolve the issue, this work proposes an enhanced approximate information extraction approach, namely, fact extractor system for Java applications (FESJA) that aims to automate software modularization using a fact extraction system. The proposed FESJA technique extracts all the entities along with their corresponding more dominant formal and informal relationships from a Java source code. Results demonstrate the improved performance of FESJA, by extracting 74 (classes), 43 (interfaces), and 31 (enumeration), in comparison with eminent information extraction techniques.ca_ES
dc.identifier.doihttps://doi.org/10.1155/2022/8640596
dc.identifier.issn2314-4629
dc.identifier.urihttp://hdl.handle.net/10459.1/84126
dc.language.isoengca_ES
dc.publisherHindawica_ES
dc.relation.isformatofReproducció del document publicat a https://doi.org/10.1155/2022/8640596ca_ES
dc.relation.ispartofJournal of Mathematics, 2022, vol. 2022, 8640596ca_ES
dc.rightscc-by (c) Muhammad Zakir Khan et al., 2022ca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleA Novel Approach to Automate Complex Software Modularization Using a Fact Extraction Systemca_ES
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_ES
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
jormat_a2022v2022ar8640596.pdf
Size:
1.32 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: